
USING ADA* -- THE DEEPER CAALLANGES
David A. Feinberg, C.D.P.

Software Technology
Boeing Aerospace Company

Seattle, Washington 98124
Telephone: (206) 773-5485

P. 0. BOX 3999, M/S 82-53

ABSTRACT :

The Ada programming language and the associated Ada Programming
Support Environment (APSE) and Ada Run Time Environment (ARTE)
provide the potential for significant life-cycle cost reductions
in computer software development and maintenance activities.

,The Ada programming language itself is standardized, trademarked
and controlled via formal validation procedures. Though
compilers are not yet as production-ready as most would desire,
the technology for constructing them is sufficiently well known
and understood that time and money should suffice to correct
current deficiencies.

The APSE and ARTE are, on the other hand, significantly newer
issues within most software development and maintenance efforts.
Currently, APSE and ARTE are highly dependent on differing
implementer concepts, strategies and market objectives. Complex
and sophisticated mi.ssion-critical computing systems require the
use of a complete Ada-based capability, not just the programming
language itself; yet the range of APSE and ARTE features which
must actually be utilized can vary significantly from one system
to another. As a consequence, the need to understand,
objectively evaluate, and select differing APSE and ARTE
capabilities and features is critical to the effective use of
Ada and the life-cycle efficiencies it is intended to promote.
Methodologies for dealing with dissimilar APSE/ARTE systems are
also in sore need of definition and understanding: particularly
for industry contractors who will be developing similar
capabilities (e.g., missile and air/space craft navigation,
guidance, throttle control) for differing customers (e.g., Army,
Navy, Air Force, NASA, Boeing, Airbus).

It is the selection, collection, and understanding of APSE and
ARTE which provide the deeper challanges of using Ada for

* Ada is a registered trademark of the United States Government
(Ada Joint Program Office)

E.2.3.1

real-life mission-critical computing systems. This paper
discusses some of the current issues which must be clarified,
often on a case-by-case basis, in order to sucessfully realize
the full capabilities of Ada.

1. INTRODUCTION

In the early 1970's, the Department of Defense (DOD) recognized
several problems related to the acquisition of software for
major defense systems. Software systems were too frequently
late, unreliable, and more expensive than planned.
Additionally, there was a steadily rising trend in software
costs while, at the same time, computer hardware costs were
decreasing significantly.

At the time, the primary cause of these problems was identified
as a deficiency in the computer programming process;
particularly in the area of programming languages. There were
over 450 general purpose languages and dialects being used for
DOD systems with no single point of control for each. Many of
these languages were poorly suited to their application, and/or
did not take advantage of nor support good programming
practices . The DOD was also beginning to recognize the
long-term life-cycle advantages of using higher order languages
(HOL'S) rather than assembler code. By 19748 each of the
military services was independently proposing development of a
standard HOL for their service's mission-critical software
development.

In January, 19758 a joint services HOL working group began
identifying and defining requirements for all DOD HOL'S and
individual service efforts were halted. The "Strawman" document
issued in April, 19758 started a multi-year effort which
culminated in 1981 and 1983 with the establishment of
ANSI/M1L-STD-1815A8 "Reference Manual for the Ada Programming
Language," as a single DOD standard for all future
mission-critical computer software development efforts.

Unfortunately, durinq the six years required to produce the Ada
standard, the understanding of the problems of developing large,
complex software systems evolved. While the programming process
was still important, newer full-life-cycle models of software
project activities reduced programming's overall significance to
only 20% of the whole; much less than was thought in the early
1970's.

In response to this changing perception, the HOL working group
began to recognize that the new common DOD HOL alone would not
be sufficient to ensure DOD'S desired improvements in software
development. The programming environment within which Ada would

E.2.3.2

operate needed significant improvement.

Following two years of work, an Ada Programming Support
Environment (APSE) was defined in the 1980 "Stoneman" document.
Even though this document provides criteria for assessment and
evaluations of programming environments, it is not a standard
and, as such, implementers of Ada tools are not bound by any
hard and fast requirements. Rather, implementers are free to
choose any of the four "Stoneman"-defined levels of Ada
programming support. More importantly, they are also free to
select, as they see fit, specific tools within each of the
levels. Thus, while Ada, the language, is tightly controlled,
APSE'S are not controlled at all and vary significantly from one
implementer's products to another's.

In a similar manner, an Ada Run Time Environment (ARTE) can also
vary significant3.y. Once the necessities of the Ada language
standard are satisfied, implementers are free to produce a wide
varietv of operating executives. In fact, ARTE development is
even less constrained than development of an APSE; no assessment
and evaluation document such as "Stoneman" even exists for run
time requirements.

In response to the absence of APSE and ARTE system
standardization, projects using Ada must, on a case-by-case
basis, identify those features most necessary to their specific
requirements. Once this is done, evaluation of the numerous
implementer offerings is required in order to select the
critical environmental capabilities which will be used. The
following sections describe the key issues affecting selection
of Ada Programminq Support and Ada Run Time environments.

2. ADA PROGRAMMING SUPPORT ENVIRONMENT

An Ada Programming Support Environment (APSE) consists of a
number of individual tools which provide software support to
write, test and maintain Ada language programs. An APSE can
also be used to provide orderly program development methodology.
Tools within an APSE will vary from implementer to implementer;
however, most implementers conform at some level to the
"Stoneman" document. The cooperating ability of tools with each
other, as opposed to merely "Stoneman" tools-database
interfaces, can, however, vary significantly.

Typically, an APSE will consist of at least the minimum tool
levels described in "Stoneman": an operating system, a Kernal
APSE (KAPSE), and a Minimal APSE (MAPSE). With the exception of
a debugger, it is virtually impossible to utilize Ada without
the MAPSE tools: a compiler, linker/loader, editor,
configuration manager, and job control language processor.

E.2.3.3

Additionally, a full APSE (i.e.8 anv Ada Programming Support
Environment with tools in excess of those called for by MAPSE)
may consist of any number of augmenting tools such as a pretty
printer, cross reference generator, test generator, program
design language processor, source code control system, problem
reporting system, etc.

Evaluation of an APSE is required in order to determine which
available environment best fits the needs of a specific
Ada-based project. This minimally requires analyzing the tools
in a given APSE to determine their effectiveness, and where
possible, to directly compare them to similar tools in other
APSE’ s .
While quantitative methods can be used to examine many tools,
this is not always possible. First, even though two (or more)
t001.s perform the same function on the same computer using the
same operating system, their performance characteristics may
vary significantly based on computer load factors at the time of
testing. Even if these factors can be controlled or mitigated,
design parameters of the tools themselves can cause fluctuating
performance data depending on individual account and session
situations. In general, modern virtual memory multi-component
computer systems can play havoc with what appear to be
straiqht-forward quantitative evaluations.

The second reason is that quantitative evaluation methods are
not always applicable. Discussions of such factors as “user
friendliness” do not realistically lend themselves to
quantitative accumulation. Even so, these factors can be
significant issues when determining the overall effectiveness of
a tool.

While individual tool evaluations are important, even more
critical is extending any evaluation to the integration and
cooperation of all of the tools which comprise an APSE. It is
not uncommon for individual software tools to be efficacious as
stand-alone entities, yet efforts to use the results of one as
grist for another fail totally. Such an overall view of APSE
effectivity and suitability cannot be obtained by simply summing
the results of individual tool evaluations. An APSE must be
reviewed as an integrated (or non-integrated) whole to determine
if it fulfills a project’s software development needs.

E . 2 . 3 . 4

3. ADA RUN TIME ENVIRONMENT

An Ada Run Time Environment (ARTE) is the collaboration of
program object code conventions with data structures used to
interface to the underlying run time system. This system, in
turn, consists of a series of library and/or executive routines
that are necessary to support execution of Ada programs.
Typical functions of an ARTE include general operating system
services as well as Ada-specific features such as tasking,
dynamic memory management, exception handling, interrupt
processing and any other needed support deferred from a
compiler’s code generation phases.

Even though the Ada language is standardized, the ARTE for
different computers and operating systems can vary widely. This
can be due to differences in computer hardware, operating
systems, compiler impl-ementations of Ada semantics, or, the most
frequent case, a combination of all of these. Additional
variations can result from trade-offs for reasons of ARTE or
program size, speed, overhead, capability, or portability.

In rare cases, a specific project using Ada will find one or
more ARTE implementations which are universally best suited to
its needs. Usually, however, compromises between various
implementations in terms of project priorities will be required.
Given the characteristics of most mission-critical software
programs, the best ARTE may turn out to be the one that is
easiest and safest to modify on a case-by-case basis.

Evaluation of ARTE elements depends on the depth to which a
project is required to delve. Some elements (e.g., code size,
coding language, implemented pragmas) are readily apparent by
simple examination of external characteristics or implementer
documentation. Others (e.g., subprogram call timing, arithmetic
implementations) can be found throuqh test program executions.
Still others (e.g.8 delay overhead, task dispatch algorithm) can
only be determined by detailed analysis (or even experimental
modifications) of the run time code itself.

4. ENVIRONMENTAL PROLIFERATION

Even though the Ada programming language itself is standardized,
trademarked, and controlled via formal validation procedures,
Ada Programming Support Environments (APSE) and Ada Run Time
Environments (ARTE) are not. The U. S. Army has already taken
delivery of its APSE/ARTE system: the Ada Language System
(ALS). The Air Force continues to make progress on key
components of its support environment: the Ada Integrated
Environment (AIE) and its supporting Ada Compilation System
(ACS) . Within the past few months, the Navy has let a contract

E.2.3.5

for its version of the ALS: ALS/N. NASA has also established
its policy calling for an integrated Software Support
Environment to support use of Ada for Space Station operational
software.

Thus far, with the partial. exception of ALS and ALS/N, none of
the existing APSE/ARTE systems are compatible with each other;
even though they execute on identical host and target computers.
When systems on the drawing boards plus commercially available
products (e.g., Systems Designers' "Perspective", Verdix's
"vADS") are added to the list, the proliferation of dissimilar
capabilities, facilities and functions will reach significant
proportions. The late 1980's have all the potential to become
highly reminiscent of the 1970's programming language
proliferation which led to Ada in the first place (Figure 1).

ORGAN1 ZATION 1970's - HOL 1980's - APSE

A i r Force

Army

Navy

NASA

Industry

JOVIAL

TACPOL

CMS-2

HAL/S

FORTRAN
Pascal
C

AIE/ACS

ALS

ALS/N

SSE

Perspective
VADS
ADE
etc.

Figure 1. Organizational Standards Proliferation

The potential proliferations in late 1980's APSE/ARTE are the
well-intentioned result of attempts to "graft" enhancements onto
the Ada programming language, which is in turn, the solution to
the 1970's perception of the software development problem. Ada
was initially designed to correct difficulties in programming.
Current, 1980's, estimates a l l o t only 20% of the software
development cycle to programming, and consequently, Ada needed
to be expanded to fit a newer, better, full-life-cycle model.
Unfortunately, the "Stoneman" grafts have been done

E.2.3.6

"on-the-fly", and have, in turn, recreated a mutant of the
initial problem. The Ada Language is standardized. APSE'S and
ARTE's are not. Moreover, differing organizations are beginning
to require use of their incompatible APSE/ARTE even as
full-life-cycle model methodologies for software development are
beginning to coalesce (e.g. , DOD-STD-2167) .

5 . CONCLUSION
The use of Ada and its associated Ada Programming Support
Environment (APSE) and Ada Run Time Environment (ARTE) continues
to provide a high potential for significant life-cycle
methodology improvements and cost reductions in software
development and maintenance activities. In order to move the
significant advantages of Ada from potential to actual, several
concurrent efforts must be completed. The first, development of
high quality compilers and optimizing code generators, is
already well underway. Over a dozen organizations currently
offer Ada compilers and some form of minimal programming support
tools. The technology necessary to improve these offerings has
been in existence for over a dozen years. Time and incentive
should produce the needed production quality compilers.

Development of full-function, integrated, APSE'S is the second
needed effort. While the qoal of this effort is conceptually
clear, the steps necessary to reach it remain unacceptably
vague. Full scale software development environments have been
proposed for years, but no universally usable one yet exists.
Using Ada as a vehicle for producing such a capability has much
merit and the "Stoneman" document provides some necessary
guidance. Unfortunately, these items are not yet enough.
Significant research into programming environment requirements
and solution sets, particularly those dealing with human factors
and expert systems, remains to be accomplished.

The third effort needed to move Ada from potential to actual
usage is the development of a configurable ARTE. Ada is

These intended for "mission-critical" computing systems.
systems can range from ground-based surveillance and tracking
systems (air, space, sea) to in-flight avionics (manned,
unmanned) to simple sensor/actuator systems, and much much more.
Even though all of these mission critical systems can be
considered as "real time," many other widely varying
characteristics can affect their execution environment
constraints. A great deal of research and development remains
to be done. The need for an ARTE criteria and evaluation
document is barely even recognized. Yet, the ultimate key to
mission-critical computing is its performance in the field;
under "production" conditions.

E.2.3.7

Finally, and most difficult, is the need to recognize and begin
to resolve the issue of incompatible APSE/ARTE systems. Using
the full-life-cycle model demanded of today's software
development process, the proliferation of differing services'
tool sets can clearly become counter-productive; particularly
for organizations performing similar work for different
customers .
The work of many individuals and organizations will be required
to complete the efforts described in this paper. The
definition, rationalization, implementation and integration of
APSE and ARTE into the Ada language to create complete software
development environments are now the deeper challanges of using
Ada. Only when they are accomplished will Ada be able to meet
the ultimate goals for which it was created.

ACKNOWLEDGEMENTS :

The work of many individuals is necessary not only to answer the
questions raised in this paper, but to raise and clarify them in
the first place. Several members of Boeing's Ada Project have
contributed ideas and concepts which led to this paper. Special
recognition belongs to two: James B. Unkefer for his work on
Ada Programming Support Environments, and Ruth A. Maule for her
clear, effective approach to the enigmas of Ada Run Time
Environments. Thanks are also due to Maretta Holden of Boeing
Military Airplane Company who continues to see into the future
farther than most of us.

REFERENCES :

1. AJPO, "Kernal Ada Programming Support Environment (KAPSE)
Interface Team Public Report," Volumes I-V.

2. ARTEWG, "Draft Charter for the Ada Runtime Environment
Working Group," July, 17, 1985.

3. ARTEWG, "Ada Implementation Dependencies," November 12, 1985
(draft) .
4. United States Air Force, "Preliminary Program Manager's
Guide to Ada," document numbers ESD-TR-83-255 and WP-25012,
February, 1984.

5. United States Department of Defense, "Ada Methodologies:
Concepts and Requirements (METHODMAN)," November, 1982.

E.2.3.8

6. United States Department of Defense, "Interim DoD Policy on
Computer Programming Languages," Memorandum to Secretaries of
the Military Departments, et. al., from Under Secretary of
Defense Robert DeLauer, June 10, 1983.

7. United States Department of Defense, "Proposed Military
Standard Common APSE Interface Set (CAIS), Version 1.4," October
31, 1984.

8. United States Department of Defense, "Reference Manual for
the Ada Programming Language," ANSI/MIL-STD-l81SA, February,
1983.

9. United States Department of Defense, "Requirements for Ada
Programming Support Environments (STONEMAN)," February, 1980.

BIOGRAPHY:

David A. Feinberg, C.D.P., is a specialist in the development
and use of software engineering tools and environments. He is
employed by The Boeing Company and is currently in charge of the
company's Ada Project. During the past twenty-three years, Mr.
Feinberg's assignments have included creation of a software
development facility used for the construction of commerical
electric power distribution and control ptoducts; large scale
network operations and communications management; and compiler
and operatinq systems construction. He is the author of over
twenty-five papers, essays and articles. Mr. Feinberg is a
member of ACM, IEEE Computer Society and DPMA, and holds an
M.S.A. degree from The George Washington University and a B . S .
degree from Stanford,

E.2.3.9

